
Omid: A Transactional Framework for HBase

Francisco Perez-Sorrosal
Ohad Shacham

Hadoop Summit SJ

June 29th, 2016

Outline

§  Background
§  Basic Concepts
§  Use cases
§  Architecture
§  Transaction Management
§  High Availability
§  Performance
§  Summary

Hadoop Summit SJ (June 29th 2016)

2

§  New Big data apps → new requirements:
●  Low-latency
●  Incremental data processing
●  e.g. Percolator

§  Multiple clients updating same data concurrently

●  Problem: Conflicts/Inconsistencies may arise
●  Solution: Transactional Access to Data

Background

Hadoop Summit SJ (June 29th 2016)

3

§  Transaction → Abstract UoW to manage data with certain
guarantees
●  ACID
●  Relational databases

§  Big data → NoSQL datastores → Transactions in NoSQL
 ●  Relaxed Guarantees:

○  e.g. Atomicity, Consistency

Background

●  Hard to Scale
○  Data partition
○  Data replication

Hadoop Summit SJ (June 29th 2016)

4

5

§  Flexible
§  Reliable
§  High Performant
§  Scalable

…OLTP framework that allows BigData apps to
execute ACID transactions on top of HBase

+ = Consistency in
BigData Apps

Omid is a…

Hadoop Summit SJ (June 29th 2016)

Why use Omid?
§  Simplifies development of apps requiring consistency

●  Multi-row/multi-table transactions on HBase
●  Simple & well-known interface

§  Good performance & reliability
§  Lock-free
§  Snapshot Isolation
§  HBase is a blackbox

●  No HBase code modification
●  No changes on table schemas

§  Used successfully at Yahoo
 Hadoop Summit SJ (June 29th 2016)

6

Snapshot Isolation

▪  Transaction T2 overlaps in time with T1 & T3, but spatially:
●  T1 ∩ T2 = ∅
●  T2 ∩ T3 = { R4 } Transactions T2 and T3 conflict

▪  Transaction T4 does not have conflicts

TxId

T1
T2
T3
T4

Time Overlap Spatial Overlap (WriteSet)

R1 R2 R3 R4
 R3 R4

 R2 R4
R1 R3

Hadoop Summit SJ (June 29th 2016)

7

Sieve

Use Cases: Sieve @ Yahoo

HBase	
	
	

Internet

Crawler Doc Proc Aggregation

Omid

Feeder

Real-Time
Index

Notifications
Transactional Data Flow

Hadoop Summit SJ (June 29th 2016)

8

Hive Metastore Thrift Server

Use Cases:

HBase	
	
	

HBaseStore

Omid

Hadoop Summit SJ (June 29th 2016)

ObjectStore

Rela)onal	
Database	

	
	

9

Transactional App

Architectural Components

HBase

Omid Client

Transaction Status Oracle
(TSO)

Timestamp
Oracle

Get Start/Commit
Timestamps

Start/Commit TXs

Keep track &
Validate TXs

Commit Table

Compactor

Commit data

R/W data

Guarantee
SI

App Table
Shadow

Cells App Table App Table Shadow
Cells

Hadoop Summit SJ (June 29th 2016)

10

Client APIs
▪  Transaction Manager → Create Transactional contexts

Transaction begin();
void commit(Transaction tx);
void rollback(Transaction tx);

▪  Transactional Tables (TTable) → Data access
Result get(Transaction tx, Get g);
void put(Transaction tx, Put p);
ResultScanner getScanner(Transaction tx, Scan s);

Hadoop Summit SJ (June 29th 2016)

11

TX Management (Begin TX phase)
Omid Client TSO TO Table/SC CommitTable

Begin TX Get ST
ST=1

TX(ST=1)

R/W Ops for TX (ST=1)

App

Begin TX

R/W Ops (within TX context)

TX Context

R/W Results for TX with ST=1

Read Ops:
Get right results
for TX’s Snapshot Write Ops:

Build Writeset
for TX

Hadoop Summit SJ (June 29th 2016) 12

TX Management (Commit TX Phase)
Omid Client TSO TO Table/SC CommitTable

Commit TX (Writeset)

Get CT

CT=2

TX(CT=2)

App

Commit TX

Check Conflicts
of TX Writeset
in Conflict Map

Persist commit details (ST/CT) for TX

Hadoop Summit SJ (June 29th 2016)

13

TX Management (Complete TX Phase)
Omid Client TSO TO Table/SC CommitTable

Update SC for TX (ST=1/CT=2)

App

Complete commit (Cleanup entry for TX with ST=1)

Result

Hadoop Summit SJ (June 29th 2016)

14

Transactional App

High Availability

HBase

Omid Client

Transaction Status Oracle

Timestamp
Oracle

Get Start/Commit
Timestamps

Start/Commit TXs

Commit Table

Compactor

Commit data

R/W data

Guarantee
SI

App Table
Shadow

Cells App Table App Table Shadow
Cells

Single
point of
failure

Hadoop Summit SJ (June 29th 2016)

15

Timestamp
Oracle

Transaction Status Oracle

Transactional App

High Availability

HBase

Omid Client

Transaction Status Oracle

Timestamp
Oracle

Get Start/Commit
Timestamps

Start/Commit TXs

Commit Table

Compactor

Commit data

R/W data

Guarantee
SI

App Table
Shadow

Cells App Table App Table Shadow
Cells Recovery

State

Primary
/

Backup
Hadoop Summit SJ (June 29th 2016)

16

High Availability – Failing Scenario
Omid Client TSO P TSO B Table/SC CommitTable App

Begin TX
Begin TX Get ST

ST=1
TX(ST=1)

TX 1

TO

Data	Store	
	
	

Commit	Table	
	
	

Write(k1, v1) (ST=1)
TX 1 Write(k1, v1)

 (k1, v1, 1)
Hadoop Summit SJ (June 29th 2016)

17

High Availability – Failing Scenario
Omid Client TSO P TSO B Table/SC CommitTable App TO

Data	Store	
	
	

Commit	Table	
	
	

Write(k2, v2) (ST=1)
Write(k2, v2)

 (k1, v1, 1)
 (k2, v2, 1)

Commit TX 1{k1, k2}

Commit TX 1

Get CT

CT=2

Persist commit details for TX 1

Hadoop Summit SJ (June 29th 2016)

18

High Availability – Failing Scenario
Omid Client TSO B Table/SC CommitTable App

Begin TX
Begin TX Get ST

ST=3
TX(ST=3)

TX 3

TO

Data	Store	
	
	

Commit	Table	
	
	

Read(k1) (ST=3)
TX 3 Read(k1)

 (k1, v1, 1)

 (k1, v1, 1)

 (k2, v2, 1) Hadoop Summit SJ (June 29th 2016)

19

High Availability – Failing Scenario
Omid Client TSO B Table/SC CommitTable App TO

Data	Store	
	
	

Commit	Table	
	
	

 Return TX 1 CT

 (k1, v1, 1)

 ! exist
 ! exist

 Read(k2) (ST=3)
 (k2, v2, 1)

TX 3 Read(k2)

 (k2, v2, 1)

 CT = 2
 Return TX 1 CT

 v2

 (1, 2)
Hadoop Summit SJ (June 29th 2016)

20

Timestamp
Oracle

Transaction Status Oracle

Transactional App

High Availability

HBase

Omid Client

Transaction Status Oracle

Timestamp
Oracle

Get Start/Commit
Timestamps

Start/Commit TXs

Commit Table

Compactor

R/W data

Guarantee
SI

App Table
Shadow

Cells App Table App Table Shadow
Cells Recovery

State

Hadoop Summit SJ (June 29th 2016)

21

High Availability – Solution
Omid Client TSO P TSO B Table/SC CommitTable App

Begin TX
Begin TX Get ST

ST=1
TX(ST=1,E=1)

TX 1, 1

TO

Data	Store	
	
	

Commit	Table	
	
	

Write(k1, v1) (ST=1)
TX 1 Write(k1, v1)

 (k1, v1, 1)
Hadoop Summit SJ (June 29th 2016)

22

High Availability – Solution
Omid Client TSO P TSO B Table/SC CommitTable App TO

Data	Store	
	
	

Commit	Table	
	
	

Write(k2, v2) (ST=1)
Write(k2, v2)

 (k1, v1, 1)
 (k2, v2, 1)

Commit TX 1{k1, k2}

Commit TX 1

Get CT

CT=2

Persist commit details for TX 1

Hadoop Summit SJ (June 29th 2016)

23

High Availability – Solution
Omid Client TSO B Table/SC CommitTable App

Begin TX
Begin TX Get ST

ST=3
TX(ST=3,E=3)

TX 3,3

TO

Data	Store	
	
	

Commit	Table	
	
	

Read(k1) (ST=3)
TX 3 Read(k1)

 (k1, v1, 1)

 (k1, v1, 1)

 (k2, v2, 1) Hadoop Summit SJ (June 29th 2016)

24

High Availability – Solution
Omid Client TSO B Table/SC CommitTable App TO

Data	Store	
	
	

Commit	Table	
	
	

 Return TX1 CT

 (k1, v1, 1)

 ! exist

 (k2, v2, 1)

 Invalid
Try invalidate

 (1, -, invalid)

 ! exist

 Read(k2) (ST=3)

 (k2, v2, 1)

TX 3 Read(k2)

Hadoop Summit SJ (June 29th 2016)

25

High Availability – Solution
Omid Client TSO B Table/SC CommitTable App TO

Data	Store	
	
	

Commit	Table	
	
	

Return TX 1 CT

 (k1, v1, 1)

 ! exist
 ! exist

 (k2, v2, 1) (1, 2, invalid)
Hadoop Summit SJ (June 29th 2016)

26

High Availability

§  No runtime overhead in mainstream execution
•  Minor overhead after failover

§  TSO uses regular writes

§  Leases for leader election
•  Lease status check before/after writing to Commit Table

Hadoop Summit SJ (June 29th 2016)

27

Perf. Improvements: Read-Only Txs
Omid Client TSO/TO Table/SC

Begin TX
TX(ST=1)

Read Ops for TX (ST=1)

App

Begin TX

Read Ops (in TX context)

TX Context

Read Results in Snapshot

Commit TX
Writeset is ∅, so no need to contact TSO!!! Success

Hadoop Summit SJ (June 29th 2016)

28

TSO
HBase

Perf. Improvements: Commit Table Writes

Omid
Client

HBase
TSO

Commit
Table Commit

Data

Omid
Client

Commit
Data

Hadoop Summit SJ (June 29th 2016)

29

HBase
TSO

Perf. Improvements: Commit Table Writes

Omid
Client

HBase
TSO

Commit
Table Commit

Data

Omid
Client

Commit
Data

Hadoop Summit SJ (June 29th 2016)

30

0
50

100
150
200
250
300
350
400

1 2 4 6

Tp
s

* 1
03

Commit Table: # Region servers

Omid Throughput with Improvements

Hadoop Summit SJ (June 29th 2016)

31

Summary
§  Transactions in NoSQL

•  Use cases in incremental big data processing
•  Snapshot Isolation: Scalable consistency model

§  Omid
•  Web-scale TPS for HBase
•  Reliable and performant
•  Battle-tested
•  http://omid.incubator.apache.org/

Hadoop Summit SJ (June 29th 2016)

32

Questions?

Hadoop Summit SJ (June 29th 2016)

33

@ApacheOmid
Apache Omid Incubator Page

